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Overview of topics

• Memory management with R
• Good practices with large data

Applications to trade data:

• Firm level data
• Fitting PL distributions
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Memory Management in R

• Memory Constraints: All data must fit into RAM, unless specific techniques are
employed.
→ max size of data that you can process depends on the amount of free RAM available:

• Rule of thumb: free RAM = 2‐3 × size of data

How much free RAM do I have?
• with WIN Powershell or CMD: ”C: systeminfo | find ”Available Physical Memory
• on MAC: ”system_profiler SPHardwareDataType | grep ”Memory:”
• on Linux: ”free ‐h”
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Memory Management in R

• Efficient Data Structures: Use memory‐efficient data structures:
• Use data.table for large datasets ‐ provides an efficient way of handling large data
with a syntax similar to data.frame but better performance.

• Consider matrix or array when working with numerical data for faster operations
and lower memory footprint.

• Data Processing:
• Subsetting: Work with only the necessary subset of your data to reduce memory usage.
• ff Package: Use the ff package which stores data on disk, but allows for in‐RAM‐like
handling of the data.

• Garbage Collection: Manually trigger garbage collection to reclaim memory using
gc() after removing large objects or completing heavy operations.

• Memory Profiling: Identify where most memory is being used:
• Use pryr::mem_used() to check how much memory is currently being used.
• Employ profvis to visualize memory usage and performance bottlenecks in your code.
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Object size

object.size(my_data)

> chr_vect <- c("12","11","33")
> dbl_vect <- c(12,11,33)
> format(object.size(chr_vect), units = "auto")
[1] "248 bytes"
> format(object.size(dbl_vect), units = "auto")
[1] "80 bytes"
> memory.profile()

NULL symbol pairlist closure environment promise language special builtin char
1 37875 1250989 24936 7117 34670 338840 45 685 122872

logical integer double complex character ... any list expression bytecode
36574 196015 18644 40 353876 11 0 91695 1 76205

externalptr weakref raw S4
7455 2137 2187 3573
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Factors vs Characters

Encode variables efficiently (e.g., factor instead of character);

> gender <- c("female", "male", "other")
> format(object.size(gender), units = "auto")
[1] "272 bytes"
> format(object.size(as.factor(gender)), units = "auto")
[1] "672 bytes"
> gender <- rep(c("female", "male", "other"), 100)
> format(object.size(gender), units = "auto")
[1] "2.6 Kb"
> format(object.size(as.factor(gender)), units = "auto")
[1] "1.8 Kb"
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A few other memory‐management tips in R:

1. Sessions continue – and memory is occupied – until you log out.

2. Manage sessions efficiently by tidying the R session workspace:
• Load only the data you need;
• Remove redundant dataframe columns: dataframe$redundant <‐NULL;
• Remove rm() data objects from the workspace once you don’t need them.

• Force Garbage Collection gc() in loops (automatic gc is enough most of the time)
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Chunk and Pull
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Chunk and Pull - Example

Download the Siren Data at this link and store in /Downloads/temp
• Siren is the French firm tax identifier
• Siren Data contains the stock of all French firms
• both active and inactive firms (since 1973), i.e. > 23M firms

$ zcat ~/Downloads/temp/StockUniteLegale_utf8.csv.gz | head -n 3
siren,statutDiffusionUniteLegale,unitePurgeeUniteLegale,dateCreationUniteLegale,sigleUniteLegale,sexeUniteLegale ..
000325175,O,,2000-09-26,,M,THIERRY, ...
001807254,O,,1972-05-01,,M,JACQUES-LUCIEN, ...

$ zcat ~/Downloads/temp/StockUniteLegale_utf8.csv.gz | wc -l
23065462
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Chunck and Pull in 3 Steps

1. split the data by year using the shell into smaller ”chucks”
• use AWK for this, for WIN use awk through Cygwin
• AWK is compiled rather than interpreted language

2. write a function in R that compute the share of firms founded by a woman
3. pull together the output of each year to get a time series
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Chunk and Pull - Step 1

1.A) Split the data into chunks, by year in which the company was founded (column $4)
preserve info about the firm identifier ($1) and gender of the founder ($6)

#!/bin/sh
wd=~/Downloads/temp
fname=StockUniteLegale_utf8.csv.gz
for year in {1990..2022}; do

rm -rf ${wd}/yearly_data/SIREN_${year}.csv.gz
echo "Working on year $year"
echo "siren, gender_founder" > ${wd}/yearly_data/SIREN_${year}.csv
zcat $fname | awk -F ',' "{if(substr(\$4, 1, 4)==${year}) print \$1\",\"\$6}" >> ${wd}/yearly_data/SIREN_${year}.csv
gzip -f ${wd}/yearly_data/SIREN_${year}.csv

done

1.B) save the above in chunk_siren.sh and in the shell run bash chunk_siren.sh
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Chunk and Pull - Step 1

$ ls ~/Downloads/temp/yearly_data
SIREN_1990.csv.gz SIREN_1993.csv.gz SIREN_1996.csv.gz SIREN_1999.csv.gz
SIREN_2002.csv.gz SIREN_2005.csv.gz SIREN_2008.csv.gz SIREN_2011.csv.gz
SIREN_2014.csv.gz SIREN_2017.csv.gz SIREN_2020.csv.gz SIREN_1991.csv.gz
SIREN_1994.csv.gz SIREN_1997.csv.gz SIREN_2000.csv.gz SIREN_2003.csv.gz
SIREN_2006.csv.gz SIREN_2009.csv.gz SIREN_2012.csv.gz SIREN_2015.csv.gz
SIREN_2018.csv.gz SIREN_2021.csv.gz SIREN_1992.csv.gz SIREN_1995.csv.gz
SIREN_1998.csv.gz SIREN_2001.csv.gz SIREN_2004.csv.gz SIREN_2007.csv.gz
SIREN_2010.csv.gz SIREN_2013.csv.gz SIREN_2016.csv.gz SIREN_2019.csv.gz
SIREN_2022.csv.gz
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Chunk and Pull - Step 2

compute_share_F <- function(dt) {
year_dt <- as.numeric(gsub(".*?([0-9]+).*", "\\1", dt))
print(paste0("Working on year ", year_dt, ""))
read_csv(dt) %>% group_by(gender_founder) %>% mutate(freq=n()) %>%

select(gender_founder, freq) %>% distinct() %>% mutate(year=year_dt) %>%
spread(key=gender_founder, value=freq) %>% mutate(F_share=F/(F+M)) %>%
select(F_share, year) %>%
as.data.frame() %>% return()

}
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Chunk and Pull - Step 3

my_files <- list.files("~/Downloads/temp/yearly_data", full.names = TRUE)
pull_data <- map_df(my_files, compute_share_F)
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Chunk and Pull - Output

pull_data %>% filter(!is.na(gender_founder)) %>%
spread(key=gender_founder, value=freq) %>% mutate(F_share=F/(F+M)) %>%
select(F_share, year)

F_share year
1 0.3615124 1990
2 0.3656392 1991
3 0.3697042 1992
4 0.3677663 1993
...
29 0.4234902 2018
30 0.4144693 2019
31 0.4030988 2020
32 0.4207230 2021
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F IRM TRADE DATA



“Countries don’t trade. Firms trade.”
Hallak and Levinsohn, 2005
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Traditional trade theories

1. H‐O model: countries trade because of different factor endowments

2. Ricardian model: countries trade because of different technologies

Data availability from late 1970s and early 1980s, provide evidence of unexpl. facts:

1. similar countries trade extensively
2. Intra industry trade is prominent:

‐ Japan exports Toyota vehicles to Germany and imports Mercedes‐Benz automobiles
from Germany
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Intra-industry Trade

OECD 2002
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Firms in the New Trade Theories

Toyota and Mercedes‐Benz offer different varieties of the same good

Krugman (1979 and 1980) introduces:

• Monopolistic Competition: firms produce differentiated products, this
differentiation allows for a love of variety by consumers.

• Economies of Scale: Production under economies of scale permits firms to produce
a wide variety of goods more cost effectively, leading to an increase in international
trade.
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Firms in the New Trade Theories

Implications
• The love of variety leads to increased trade volumes, with countries importing many
different types of goods rather than producing them domestically.

• all firms participate in exporting
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How frequent is exporting?

Bernard et al. (2007)
22



Stylized facts on exporters

Increasing availability since the 90s of firms/plants level data, showed:

• Exporting is extremely rare.
• Exporters are different than non exporters:

• They are larger.
• They are more productive.
• They use factors differently.
• They pay higher wages.

• Even among exporters a large heterogeneity persists...
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Frame Title
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Pareto Principle in Socioeconomic Contexts

• Origin of the Name: Named after Vilfredo Pareto, an Italian economist who first
observed that 80% of Italy’s land was owned by 20% of the population. This
principle has been widely observed in various economic and social phenomena.

• City Sizes:
• The Pareto distribution can model the distribution of city sizes. A small number of cities
(e.g., major metropolitan areas) contain a large proportion of the total population.

• Example: Large cities like New York, Los Angeles, and Chicago vs. many smaller towns.
• Personal Income:

• Similarly, personal incomes are often Pareto‐distributed: a small percentage of people
earn a significantly larger portion of total income.

• This distribution helps in understanding economic disparities and is pivotal in
econometric models for wealth distribution.

• Mathematical Representation:
• Useful for models where data is skewed, and the bulk of observations are explained by
a few extreme values.
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Firm heterogeneity

In New Trade Theory Trade patterns and welfare effects are driven by firm‐level
productivity heterogeneity. The Pareto Distribution has nice features:

• Analytical Simplicity:
• Closed‐form CDF and PDF for easier mathematical manipulations.

• Policy Analysis and Comparative Statics:
• Facilitates analysis of trade policy changes and their effects.

• Trade Elasticities and General Equilibrium Effects (Chaney 2008)
• Derivation of extensive and intensive margin elasticities.
• Provides insights into general equilibrium effects and distributional consequences.
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Is this assumption on firm heterogeneity a good approximation of what we observe in
real world?
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Colombian firms’ export value

Arithmetic scale Log‐log scale
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A matter of scales

1. Arithmetic scale: histogram is highly right‐skewed
• the bulk of the distribution occurs for fairly small size (in terms of export value) but
there’s a small number of firms with a much higher than the typical value (origin of the
long‐tail)

2. Log‐log scale: if we replot the same histogram with logarithmic horizontal and
vertical axes the histogram follows quite closely a straight line.

What does it mean?
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Power Laws

Let us define p(x)dx as the fraction of firms with export value between x and x + dx. Then
observing a straight line in a log‐log scale means

log p(x) = c – (α + 1) log x

where c and ‐(α + 1) represent the intercept and the slope of the line. If we take
exponential on both sides we get

p(x) = Cx‐(α+1)

where C is a constant. Probability distributions with this functional form are said to
follow a power law and ‐(α + 1) is the exponent of the PL
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Understanding Pareto Distribution Parameters

• Scale Parameter ( xm:
• Minimum possible value or ’location’
parameter.

• Distribution begins at xm and extends
to infinity.

• Must be a positive real number (xm >
0).

• Shape Parameter (α):
• Also known as the Pareto Index or
’shape’ parameter.

• Determines the shape of the
distribution curve, particularly the ’tail’.

• Must be a positive real number (α > 0).
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# Parameters
x_m_values <- c(1, 1, 2) # scale parameters
alpha_values <- c(2, 3, 2) # shape parameters
colors <- c("red", "green", "blue") # colors for different distributions

# Prepare plot
plot(0, 0, type="n", xlim=c(0, 3), ylim=c(0, 1),

xlab="Value", ylab="Density",
main="Pareto Distribution (x_m and α)")

# Loop over parameters
for (i in 1:length(x_m_values)) {
x_m <- x_m_values[i]
alpha <- alpha_values[i]

# Generate distribution
x_values <- seq(x_m, 3, by = 0.01)
y_values <- dpareto(x_values, scale = x_m, shape = alpha)

# Add to plot
lines(x_values, y_values, col=colors[i], lwd=2)

}

# Add legend
legend("topright", legend=paste("x_m =", x_m_values, ", α =", alpha_values), fill=colors)
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Estimating the parameters of a PL

Typically 3 methods to estimate Power law exponent from empirical data:
1. linear fit of the log‐log plot of the empirical density (binned histogram);
2. linear fit of the log‐log plot of the CCDF or rank‐size;
3. maximum likelihood (ML).

Remarks. These estimation procedures are typically applied above a given threshold value
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Full vs top sample

Full Sample Only top 50%
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Method 1 - Binning

Most used density estimator is the histogram, an estimate of the density formed by
splitting the range of a variable X into equally spaced intervals and calculating the
fraction of the sample in each interval.
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Method 1 - Binning

Practically to build an histogram one has to set:
1. origin: x0
2. width: h
3. bins: defined as [x0 +m× h, x0 + (m+ 1)h]

where m can be positive integers.

Given a sample {xi, i = 1, ..., n} the empirical histogram f̂(x) is then defined as

f̂(x) =
1

nh
(#of xi in the same bin as x) (1)
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Method 1 - Practical Corner

Which bin width? The smaller the width, the more the # of bins
• the better the resolution of the frequency distribution
• the worse accuracy with which each value of f(x) is estimated
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Method 2 - CCDF

An alternative (and more convenient) method to visualize and detect a PL behaviour is to
plot the complementary cumulative distribution function (CCDF) on log‐log scales.
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Method 2 - CCDF

The CCDF P(x) is the fraction of firms that have export value equal or greater than x:

P (x) =
∑
xi≥x

p(xi) (2)

Notice that, if p(x) = Cx‐(α+1) and α>2, then:

P (x) =
∑
xi≥x

p(xi) = C
∑
xi≥x

x‐(α+1) ≃ C

∫ ∞

x
x‐(α+1) dx =

C

−α
x−α (3)

→ p(x) ∼ PL(−(α+ 1)) then the CCDF of the distribution P (x) ∼ PL(−α)

Hence, when plotted on log‐log scales, the CCDF of a power law should appear as a
straight line.
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Method 2 - Practical Corner

The CCDF in a given point x is typically estimated as

P (x) =
#obs(xi ≥ x)

n

where we do not need any binning. If one observes that P (x) ∼ Cx–(α) then it should be
reasonable to use OLS in

logP (xi) = c–(α) log(xi) + ϵi (4)

Remark. xi should be iid, not the case if we order to estimate the CCDF
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Method 3 - Maximum Likelihood Estimation

As usual the statistical properties of a ML estimator depends on the validity of the
underlying assumptions.
• if the true distribution of X is a Power law, the estimator performs quite well and it is
not very sensitive to the sub‐samples used for the estimates;
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MLE for Pareto Distribution

• Likelihood Function:
• Represents the probability of observing the data.
• For i.i.d. observations x1, x2, ..., xn from a Pareto distribution:

L(α, xm) = f(x1;α, xm) · f(x2;α, xm) · ... · f(xn;α, xm)

• Log‐Likelihood Function:
• Simplifies calculations and improves numerical stability.
• Take the natural logarithm of the likelihood function:

logL(α, xm) = log f(x1;α, xm) + log f(x2;α, xm) + ...+ log f(xn;α, xm)

• Maximizing the Log‐Likelihood:
• Numerical optimization techniques (e.g., gradient‐based methods, Newton‐Raphson)
are used to find the maximum of the log‐likelihood function.
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MLE for Pareto Distribution

• Estimating Coefficients:
• The estimated values of the shape parameter (α) and the minimum value (xm) are the
maximum likelihood estimates for the Pareto distribution.

• Model Evaluation:
• Assess the goodness of fit using statistical tests and visual comparisons (Q‐Q plots,
histograms) between the observed data and the estimated distribution.
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