# 4. Large Structured Data

Irene Iodice

Bielefeld University

### Overview of topics

- *•* Memory management with R
- *•* Good practices with large data

#### Applications to trade data:

- *•* Firm level data
- *•* Fitting PL distributions

### Memory Management in R

- Memory Constraints: All data must fit into RAM, unless specific techniques are employed.
	- *→* max size of data that you can process depends on the amount of free RAM available:
		- *•* Rule of thumb: free RAM = 2‐3 *×* size of data

#### How much free RAM do I have?

- *•* with WIN Powershell or CMD: "C: systeminfo | find "Available Physical Memory
- on MAC: "system\_profiler SPHardwareDataType | grep "Memory:"
- *•* on Linux: "free ‐h"

### Memory Management in R

- *•* Efficient Data Structures: Use memory‐efficient data structures:
	- Use data.table for large datasets provides an efficient way of handling large data with a syntax similar to data.frame but better performance.
	- *•* Consider matrix or array when working with numerical data for faster operations and lower memory footprint.
- *•* Data Processing:
	- *•* **Subsetting**: Work with only the necessary subset of your data to reduce memory usage.
	- *•* **ff Package**: Use the ff package which stores data on disk, but allows for in‐RAM‐like handling of the data.
- *•* Garbage Collection: Manually trigger garbage collection to reclaim memory using gc() after removing large objects or completing heavy operations.
- *•* Memory Profiling: Identify where most memory is being used:
	- Use  $pryr: mem *used()* to check how much memory is currently being used.$
	- Employ profvis to visualize memory usage and performance bottlenecks in your code.

Object size

## object.size(my\_data)



#### Factors vs Characters

#### Encode variables efficiently (e.g., factor instead of character);

```
> gender <- c("female", "male", "other")
> format(object.size(gender), units = "auto")
[1] "272 bytes"
> format(object.size(as.factor(gender)), units = "auto")
[1] "672 bytes"
 > gender <- rep(c("female", "male", "other"), 100)
> format(object.size(gender), units = "auto")
[1] "2.6 Kb"
> format(object.size(as.factor(gender)), units = "auto")
[1] "1.8 Kb"
```
A few other memory‐management tips in R:

- 1. Sessions continue and memory is occupied until you log out.
- 2. Manage sessions efficiently by tidying the R session workspace:
	- *•* Load only the data you need;
	- *•* Remove redundant dataframe columns: dataframe\$redundant <‐NULL;
	- **Remove rm() data objects from the workspace once you don't need them.**
	- Force Garbage Collection gc() in loops (automatic gc is enough most of the time)

### Chunk and Pull



#### Chunk and Pull - Example

Download the Siren Data at this [link](https://www.data.gouv.fr/en/datasets/base-sirene-des-entreprises-et-de-leurs-etablissements-siren-siret/) and store in /Downloads/temp

- *•* Siren is the French firm tax identifier
- *•* Siren Data contains the stock of all French firms
- *•* both active and inactive firms (since 1973), i.e. *>* 23M firms

\$ zcat ~/Downloads/temp/StockUniteLegale\_utf8.csv.gz | head -n 3 siren,statutDiffusionUniteLegale,unitePurgeeUniteLegale,dateCreationUniteLegale,sigleUniteLegale,sexeUniteLegale .. 000325175,O,,2000-09-26,,M,THIERRY, ... 001807254,O,,1972-05-01,,M,JACQUES-LUCIEN, ...

\$ zcat ~/Downloads/temp/StockUniteLegale\_utf8.csv.gz | wc -l

- 1. split the data by year using the shell into smaller "chucks"
	- *•* use AWK for this, for WIN use awk through [Cygwin](https://www.cygwin.com/)
	- *•* AWK is compiled rather than interpreted language
- 2. write a function in R that compute the share of firms founded by a woman
- 3. pull together the output of each year to get a time series

#### Chunk and Pull - Step 1

1.A) Split the data into chunks, by year in which the company was founded (column \$4) preserve info about the firm identifier (\$1) and gender of the founder (\$6)

```
wd=~/Downloads/temp
fname=StockUniteLegale_utf8.csv.gz
for year in {1990..2022}; do
   rm -rf ${wd}/yearly_data/SIREN_${year}.csv.gz
   echo "Working on year $year"
   echo "siren, gender_founder" > ${wd}/yearly_data/SIREN_${year}.csv
   zcat $fname | awk -F ',' "{if(substr(\$4, 1, 4)==${year}) print \$1\",\"\$6}" >> ${wd}/yearly_data/SIREN_${year}.csv
    gzip -f ${wd}/yearly_data/SIREN_${year}.csv
done
```
1.B) save the above in chunk siren.sh and in the shell run  $\overline{bash}$  chunk siren.sh

#### Chunk and Pull - Step 1

#### \$ ls ~/Downloads/temp/yearly\_data

SIREN\_1990.csv.gz SIREN\_1993.csv.gz SIREN\_1996.csv.gz SIREN\_1999.csv.gz SIREN\_2002.csv.gz SIREN\_2005.csv.gz SIREN\_2008.csv.gz SIREN\_2011.csv.gz SIREN\_2014.csv.gz SIREN\_2017.csv.gz SIREN\_2020.csv.gz SIREN\_1991.csv.gz SIREN\_1994.csv.gz SIREN\_1997.csv.gz SIREN\_2000.csv.gz SIREN\_2003.csv.gz SIREN\_2006.csv.gz SIREN\_2009.csv.gz SIREN\_2012.csv.gz SIREN\_2015.csv.gz SIREN\_2018.csv.gz SIREN\_2021.csv.gz SIREN\_1992.csv.gz SIREN\_1995.csv.gz SIREN\_1998.csv.gz SIREN\_2001.csv.gz SIREN\_2004.csv.gz SIREN\_2007.csv.gz SIREN\_2010.csv.gz SIREN\_2013.csv.gz SIREN\_2016.csv.gz SIREN\_2019.csv.gz SIREN 2022.csv.gz

#### Chunk and Pull - Step 2

}

```
compute share F \leq - function(dt) {
 year dt <- as.numeric(gsub(".*?([0-9]+).*", "\\1", dt))
 print(paste0("Working on year ", year_dt, ""))
  read csv(dt) \gg group by(gender founder) \gg mutate(freq=n()) \ggselect(gender founder, freg) %>% distinct() %>% mutate(year=year dt) %>%
    spread(key=gender founder, value=freq) \gg% mutate(F share=F/(F+M)) \gg%
    select(F_share, year) %>%
   as.data.frame() %>% return()
```
#### my\_files <- list.files("~/Downloads/temp/yearly\_data", full.names = TRUE) pull\_data <- map\_df(my\_files, compute\_share\_F)

#### Chunk and Pull - Output

```
pull data %>% filter(!is.na(gender founder)) %>%
  spread(key=gender_founder, value=freq) %>% mutate(F_share=F/(F+M)) %>%
 select(F_share, year)
```

```
F share year
1 0.3615124 1990
2 0.3656392 1991
3 0.3697042 1992
4 0.3677663 1993
...
29 0.4234902 2018
30 0.4144693 2019
31 0.4030988 2020
32 0.4207230 2021
```
# FIRM TRADE DATA

*"Countries don't trade. Firms trade." Hallak and Levinsohn, 2005*

- 1. H‐O model: countries trade because of different factor endowments
- 2. Ricardian model: countries trade because of different technologies

- 
- -

- 1. H‐O model: countries trade because of different factor endowments
- 2. Ricardian model: countries trade because of different technologies

Data availability from late 1970s and early 1980s, provide evidence of unexpl. facts:

- 
- -

- 1. H‐O model: countries trade because of different factor endowments
- 2. Ricardian model: countries trade because of different technologies

Data availability from late 1970s and early 1980s, provide evidence of unexpl. facts:

- 1. similar countries trade extensively
- -

- 1. H‐O model: countries trade because of different factor endowments
- 2. Ricardian model: countries trade because of different technologies

Data availability from late 1970s and early 1980s, provide evidence of unexpl. facts:

- 1. similar countries trade extensively
- 2. Intra industry trade is prominent:
	- ‐ Japan exports Toyota vehicles to Germany and imports Mercedes‐Benz automobiles from Germany

### Intra-industry Trade



OECD 2002

#### Firms in the New Trade Theories

Toyota and Mercedes‐Benz offer different varieties of the same good Krugman (1979 and 1980) introduces:

- *•* **Monopolistic Competition:** firms produce differentiated products, this differentiation allows for a love of variety by consumers.
- *•* **Economies of Scale:** Production under economies of scale permits firms to produce a wide variety of goods more cost effectively, leading to an increase in international trade.

#### Firms in the New Trade Theories

Implications

- *•* The love of variety leads to increased trade volumes, with countries importing many different types of goods rather than producing them domestically.
- all firms participate in exporting

#### How frequent is exporting?



Sources: Data are for 1997 and are for firms that appear in both the U.S. Census of Manufactures and the Linked-Longitudinal Firm Trade Transaction Database (LETTD).

Notes: The first column of numbers summarizes the distribution of manufacturing firms across threedigit NAICS industries. Remaining columns report the percent of firms in each industry that export, import, and do both.

Bernard et al. (2007)

#### Stylized facts on exporters

Increasing availability since the 90s of firms/plants level data, showed:

- *•* Exporting is extremely rare.
- *•* Exporters are different than non exporters:
	- *•* They are larger.
	- They are more productive.
	- *•* They use factors differently.
	- *•* They pay higher wages.
- *•* Even among exporters a large heterogeneity persists...

## Frame Title

### Pareto Principle in Socioeconomic Contexts

- *•* Origin of the Name: Named after Vilfredo Pareto, an Italian economist who first observed that 80% of Italy's land was owned by 20% of the population. This principle has been widely observed in various economic and social phenomena.
- *•* City Sizes:
	- *•* The Pareto distribution can model the distribution of city sizes. A small number of cities (e.g., major metropolitan areas) contain a large proportion of the total population.
	- *•* Example: Large cities like New York, Los Angeles, and Chicago vs. many smaller towns.
- *•* Personal Income:
	- *•* Similarly, personal incomes are often Pareto‐distributed: a small percentage of people earn a significantly larger portion of total income.
	- *•* This distribution helps in understanding economic disparities and is pivotal in econometric models for wealth distribution.
- *•* Mathematical Representation:
	- *•* Useful for models where data is skewed, and the bulk of observations are explained by a few extreme values.

#### Firm heterogeneity

In New Trade Theory Trade patterns and welfare effects are driven by firm‐level productivity heterogeneity. The Pareto Distribution has nice features:

- *•* Analytical Simplicity:
	- *•* Closed‐form CDF and PDF for easier mathematical manipulations.
- *•* Policy Analysis and Comparative Statics:
	- *•* Facilitates analysis of trade policy changes and their effects.
- *•* Trade Elasticities and General Equilibrium Effects (Chaney 2008)
	- *•* Derivation of extensive and intensive margin elasticities.
	- *•* Provides insights into general equilibrium effects and distributional consequences.

Is this assumption on firm heterogeneity a good approximation of what we observe in real world?

#### Colombian firms' export value



Arithmetic scale Log-log scale Log-log scale

#### A matter of scales

- 1. Arithmetic scale: histogram is highly right‐skewed
	- *•* the bulk of the distribution occurs for fairly small size (in terms of export value) but there's a small number of firms with a much higher than the typical value (origin of the long‐tail)
- 2. Log‐log scale: if we replot the same histogram with logarithmic horizontal and vertical axes the histogram follows quite closely a straight line.

What does it mean?

Power Laws

Let us define  $p(x)dx$  as the fraction of firms with export value between x and  $x + dx$ . Then observing a straight line in a log‐log scale means

 $log p(x) = c - (a + 1) log x$ 

where c and  $-(\alpha + 1)$  represent the intercept and the slope of the line. If we take exponential on both sides we get

$$
p(x) = Cx^{-(\alpha+1)}
$$

Power Laws

Let us define  $p(x)dx$  as the fraction of firms with export value between x and  $x + dx$ . Then observing a straight line in a log‐log scale means

 $log p(x) = c - (a + 1) log x$ 

where c and  $-(\alpha + 1)$  represent the intercept and the slope of the line. If we take exponential on both sides we get

 $p(x) = Cx^{-(\alpha+1)}$ 

where C is a constant. Probability distributions with this functional form are said to follow a power law and  $-(\alpha + 1)$  is the exponent of the PL

### Understanding Pareto Distribution Parameters

- *•* **Scale Parameter (** *xm***:**
	- *•* Minimum possible value or 'location' parameter.
	- *•* Distribution begins at *x<sup>m</sup>* and extends to infinity.
	- *•* Must be a positive real number (*x<sup>m</sup>* > 0).
- *•* **Shape Parameter (α):**
	- *•* Also known as the Pareto Index or 'shape' parameter.
	- *•* Determines the shape of the distribution curve, particularly the 'tail'.
	- *•* Must be a positive real number (α > 0).



Pareto Distribution (x m and  $\alpha$ )

x m values  $\leq c(1, 1, 2)$  # scale parameters alpha values  $\leq c(2, 3, 2)$  # shape parameters colors  $\leq$  c("red", "green", "blue") # colors for different distributions

```
plot(0, 0, type="n", xlim=c(0, 3), ylim=c(0, 1),
     xlab="Value", ylab="Density",
     main="Pareto Distribution (x \text{ m and } \alpha)")
```

```
for (i in 1:length(x m values)) {
  x \text{ m} \leq x \text{ m} values[i]
  alpha <- alpha values[i]
```

```
x values \leq seq(x m, 3, by = 0.01)
y values \leq dpareto(x values, scale = x m, shape = alpha)
```

```
lines(x values, y values, col=colors[i], lwd=2)
```
}

```
legend("topright", legend=paste("x_m =", x_m_values, ", \alpha =", alpha_values), fill=colors)
```
### Estimating the parameters of a PL

Typically 3 methods to estimate Power law exponent from empirical data:

- 1. linear fit of the log-log plot of the empirical density (binned histogram);
- 2. linear fit of the log‐log plot of the CCDF or rank‐size;
- 3. maximum likelihood (ML).

Remarks. These estimation procedures are typically applied above a given threshold value

#### Full vs top sample





Full Sample **Constanting Constanting Const** 

Most used density estimator is the histogram, an estimate of the density formed by splitting the range of a variable X into equally spaced intervals and calculating the fraction of the sample in each interval.

### Method 1 - Binning

Practically to build an histogram one has to set:

- 1. origin:  $x_0$
- 2. width: h
- 3. bins: defined as  $[x_0 + m \times h, x_0 + (m+1)h]$

where m can be positive integers.

Given a sample  $\{x_i, i=1,...,n\}$  the empirical histogram  $\hat{f}(x)$  is then defined as

$$
\hat{f}(x) = \frac{1}{nh} (\# \text{of } x_i \text{ in the same bin as x}) \tag{1}
$$

#### Method 1 - Practical Corner

Which bin width? The smaller the width, the more the # of bins

- *•* the better the resolution of the frequency distribution
- *•* the worse accuracy with which each value of f(x) is estimated



An alternative (and more convenient) method to visualize and detect a PL behaviour is to plot the complementary cumulative distribution function (CCDF) on log-log scales.

#### Method 2 - CCDF

The CCDF  $P(x)$  is the fraction of firms that have export value equal or greater than x:

$$
P(x) = \sum_{x_i \ge x} p(x_i)
$$
 (2)

Notice that, if  $p(x) = Cx^{-(\alpha+1)}$  and  $\alpha > 2$ , then:

$$
P(x) = \sum_{x_i \ge x} p(x_i) = C \sum_{x_i \ge x} x^{-(\alpha+1)} \simeq C \int_x^{\infty} x^{-(\alpha+1)} dx = \frac{C}{-\alpha} x^{-\alpha}
$$
 (3)

 $\rightarrow$  *p*(*x*)  $\sim$  *PL*( $-\overline{(\alpha + 1)}$ ) then the CCDF of the distribution  $P(x) \sim PL(-\alpha)$ 

Hence, when plotted on log-log scales, the CCDF of a power law should appear as a straight line.

The CCDF in a given point x is typically estimated as

$$
P(x) = \frac{\# obs(x_i \ge x)}{n}
$$

where we do not need any binning. If one observes that  $P(x)\sim Cx^{-(\alpha)}$  then it should be reasonable to use OLS in

$$
logP(x_i) = c-(\alpha) log(x_i) + \epsilon_i
$$
\n(4)

Remark. *x<sup>i</sup>* should be iid, not the case if we order to estimate the CCDF

As usual the statistical properties of a ML estimator depends on the validity of the underlying assumptions.

• if the true distribution of X is a Power law, the estimator performs quite well and it is not very sensitive to the sub‐samples used for the estimates;

#### MLE for Pareto Distribution

- *•* Likelihood Function:
	- *•* Represents the probability of observing the data.
	- *•* For i.i.d. observations *x*1*, x*2*, ..., x<sup>n</sup>* from a Pareto distribution:

$$
L(\alpha, x_m) = f(x_1; \alpha, x_m) \cdot f(x_2; \alpha, x_m) \cdot \dots \cdot f(x_n; \alpha, x_m)
$$

- *•* Log‐Likelihood Function:
	- *•* Simplifies calculations and improves numerical stability.
	- *•* Take the natural logarithm of the likelihood function:

 $\log L(\alpha, x_m) = \log f(x_1; \alpha, x_m) + \log f(x_2; \alpha, x_m) + ... + \log f(x_n; \alpha, x_m)$ 

- *•* Maximizing the Log‐Likelihood:
	- *•* Numerical optimization techniques (e.g., gradient‐based methods, Newton‐Raphson) are used to find the maximum of the log‐likelihood function.

#### MLE for Pareto Distribution

- *•* Estimating Coefficients:
	- $\bullet$  The estimated values of the shape parameter ( $\alpha$ ) and the minimum value ( $x_m$ ) are the maximum likelihood estimates for the Pareto distribution.
- *•* Model Evaluation:
	- *•* Assess the goodness of fit using statistical tests and visual comparisons (Q‐Q plots, histograms) between the observed data and the estimated distribution.

Newman, M.E.J., 2005. Power laws, Pareto distributions and Zipf's law. Contemporary Physics, 46, pp. 323‐351.